Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory

نویسندگان

  • Ke-Jing Lee
  • Li-Wen Wang
  • Te-Kung Chiang
  • Yeong-Her Wang
چکیده

Strontium titanate nickelate (STN) thin films on indium tin oxide (ITO)/glass substrate were synthesized using the sol-gel method for resistive random access memory (RRAM) applications. Aluminum (Al), titanium (Ti), tungsten (W), gold (Au) and platinum (Pt) were used as top electrodes in the STN-based RRAM to probe the switching behavior. The bipolar resistive switching behavior of the set and reset voltages is in opposite bias in the Al/STN/ITO and Pt/STN/ITO RRAMs, which can be partly ascribed to the different work functions of top electrodes in the ITO. Analyses of the fitting results and temperature-dependent performances showed that the Al/STN/ITO switching was mainly attributed to the absorption/release of oxygen-based functional groups, whereas the Pt/STN/ITO switching can be associated with the diffusion of metal electrode ions. The Al/STN/ITO RRAM demonstrated a high resistance ratio of >10⁶ between the high-resistance state (HRS) and the low-resistance state (LRS), as well as a retention ability of >10⁵ s. Furthermore, the Pt/STN/ITO RRAM displayed a HRS/LRS resistance ratio of >10³ and a retention ability of >10⁵ s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Versus Voltage Characteristics of a Si Based 1-Diode Type Resistive Memory with Cr-SrTiO3 Films

In this paper, in order to suppress unwanted current paths originating from adjacent cells in a passive crossbar array based on resistive random access memory (RRAM) without extrinsic switching devices, 1-diode type RRAM which consists of a 0.2% chromium-doped strontium titanate (Cr-SrTiO3) film deposited on a silicon substrate, was proposed for high packing density, and intrinsic rectifying ch...

متن کامل

Variation of switching mechanism in TiO2 thin film resistive random access memory with Ag and graphene electrodes

0167-9317/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.mee.2012.11.009 ⇑ Corresponding authors. Tel.: +1 412 648 8989. E-mail addresses: [email protected] (M. Yun), We report the fabrication of resistive random access memory (ReRAM) on both Si and PET flexible substrates using TiO2 as the dielectric spacer between Ag electrodes. Ag/TiO2/Ag ReRAM shows unipolar switching...

متن کامل

Impact of composition and crystallization behavior of atomic layer deposited strontium titanate films on the resistive switching of Pt/STO/TiN devices

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...

متن کامل

Memristive switching of MgO based magnetic tunnel junctions

The search for nonvolatile memory concepts has a massive impact on the development of nanoscopic systems with adjustable electrical properties. Capacitor-like structures composed of insulating materials sandwiched between metallic electrodes are envisioned to overcome the limitations associated with conventional charge storage devices and may open the road to neuromorphic computing. Together wi...

متن کامل

Resistive random access memory enabled by carbon nanotube crossbar electrodes.

We use single-walled carbon nanotube (CNT) crossbar electrodes to probe sub-5 nm memory domains of thin AlOx films. Both metallic and semiconducting CNTs effectively switch AlOx bits between memory states with high and low resistance. The low-resistance state scales linearly with CNT series resistance down to ∼10 MΩ, at which point the ON-state resistance of the AlOx filament becomes the limiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015